Fundamental Calculus
Antiderivative¶
\(y = \int f(x) dx = F(x) + C\)
Note
\(f\): integrand
\(dx\): variable of integration
\(F(x)\): an antiderivative of \(f(x)\)
\(C\): constant of integration
-
\(\int x^3\ dx = \frac{x^4}{4} + C\)
Basic Integration Formulas¶
- \(\boxed{\int kf(x)dx = k \int f(x)dx}\)
- \(\boxed{\int[f(x) \pm g(x)]} = \int f(x) dx \pm \int g(x) dx\)
- \(\boxed{\int x^n dx = \frac1{n+1} x^{n+1} + C}\) \(\iff\) \(\boxed{\int \frac1x dx = \ln |x| + C}\)
- \(\boxed{\int a^x dx = (\frac1{\ln a}) a^x + C}\)
- \(\int e^x dx = e^x + C\)
- \(\boxed{\int \sin x dx = - \cos x + C}\)
- \(\boxed{\cos x dx = \sin x + C}\)
- \(\boxed{\int \sec^2 x\ dx = -\tan x + C}\)
- \(\int \csc^2 x\ dx = -\cot x + C\)
- \(\int \sec x \tan x \ dx = \sec x + C\)
- \(\int \csc x \cot x \ dx = - \csc x + C\)
- \(\int \dfrac{dx}{\sqrt{1-x^2}} = \arcsin x + C\)
- \(\boxed{\int \dfrac{dx}{1+x^2}} = \arctan x + C\)